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ABSTRACT
Experiments have long been the gold standard for causal inference in Ecology. As Ecology tackles progressively larger problems, 
however, we are moving beyond the scales at which randomised controlled experiments are feasible. To answer causal questions 
at scale, we need to also use observational data —something Ecologists tend to view with great scepticism. The major challenge 
using observational data for causal inference is confounding variables: variables affecting both a causal variable and response 
of interest. Unmeasured confounders—known or unknown—lead to statistical bias, creating spurious correlations and mask-
ing true causal relationships. To combat this omitted variable bias, other disciplines have developed rigorous approaches for 
causal inference from observational data that flexibly control for broad suites of confounding variables. We show how ecologists 
can harness some of these methods—causal diagrams to identify confounders coupled with nested sampling and statistical de-
signs—to reduce risks of omitted variable bias. Using an example of estimating warming effects on snails, we show how current 
methods in Ecology (e.g., mixed models) produce incorrect inferences due to omitted variable bias and how alternative methods 
can eliminate it, improving causal inferences with weaker assumptions. Our goal is to expand tools for causal inference using 
observational and imperfect experimental data in Ecology.

1   |   Introduction

As Ecology advances to address problems at scales from the 
continental to global, we are putting our theories to the test 
like never before with unprecedented streams of data. With 
these observational data streams, we desire to answer questions 
about causal relationships to either test theory at scale or inform 
ecosystem management. Classically in Ecology, understand-
ing causal relationships has been the domain of experiments. 
Experiments, however, have limitations for generalising to large 

scales or contexts beyond study conditions. Scaling up inference 
will therefore require us to responsibly seize the opportunity of 
large- scale observational data. Our ability to test hypotheses 
about causal relationships in observational data is limited, how-
ever, by two fundamental challenges: the complexity of nature 
and the limits of our own imaginations.

First, nature is complex! Consequently, numerous confound-
ing variables—variables affecting both a cause and out-
come of interest (Figure  1B,C), as opposed to variables only 
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influencing only the outcome (Figure 1A), exist in every sys-
tem. Confounding variables can lead to incorrect estimates of 
causal effects when not measured and controlled for in sta-
tistical analyses. Failing to control for confounding variables 
leads to bias in our statistical estimators; the estimates they 
yield will not be equal to their true value (Figure 2). A simple 
solution for bias from confounding variables is to statistically 

control for these confounders. Yet, this control requires know-
ing and measuring all confounding variables. Collecting the 
data to measure and account for each and every one is likely 
impossible, assuming we even know all of confounders. For 
example, when studying plant competition, measuring all the 
relevant soil properties is challenging due to financial and 
time constraints. Missing data on confounders is also common 

FIGURE 1    |    Directed Acyclic Graphs showing scenarios where unobserved variables either do not influence model results or could create prob-
lems due to confounding. A response variable of interest (Y) is caused by both a measured variable (X) and an unmeasured variable (U). In (A), X and 
U are uncorrelated, and thus the lack of inclusion of U in a statistical model would increase the standard error of the estimate (decreases model pre-
cision) but would not lead to bias in the effect of X on Y. However, if U also drives X as in (B) or if U and X are driven by a common driver Z as in (C), 
then omitting U from a statistical model causes omitted variable bias in the estimate of the effect of X on Y. Both (B) and (C) are examples of systems 
where the confounding common causes (U and Z respectively) must be controlled for in order to make unbiased causal inferences.

FIGURE 2    |    A visualisation of Omitted Variable Bias and the consequences for causal inference. (A) shows a DAG of a system where X has a 
positive effect on Y, and a confounding variable U has a positive effect on Y but a negative effect on X. Throughout, unobserved (i.e., unmeasured) 
variables are shown in in ellipses, such as the variable U and the error term e in panel B. (B) illustrates different estimations of the DAG in (A) using a 
path analysis. See Box 1 for a brief explanation of key differences between DAGs and path diagrams. Again, we assume U is unmeasured. In (Bi), we 
assume we can measure and control for U, as represented by the double- headed arrow between U and X, which represents the correlation between the 
two accounted for by the model. The unmeasured variable e is the residual sources of variation which as assumed to correlate with neither predictor. 
The red arrow represents the estimated path. In contrast, (Bii) and (Biii) are the reality—where we do not have a measurement of U and do not control 
for it in the path model. The researcher thinks they are fitting the model in (Bii) but instead they are fitting the model in (Biii), where the error term 
is not e alone, but rather the sum of e and variation due to the omitted variable U. Because of this, there is a directed path from the error term of the 
model to X (and thus X is endogenous). (C) shows the estimated relationships resulting from the models in (Bi) versus (Bii). The lines represent the 
estimated relationship between X and Y from their respective models. The red line is the true causal relationship, as estimated from (Bi) and the blue 
line contains omitted variable bias from not accounting for the confounding variable U as estimated by the model in Bii/Biii.
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with long- term survey data. Consider using historical mea-
sures of fish abundance to study the impacts of changes in 
biogenic habitat availability without measurements of fishing 
pressure during the same time- period. If fishing pressure less-
ened while habitat decreased, we might conclude that habitat 
has a negative effect on fish.

Second, as humans, we are limited in our ability to imagine 
how the different elements of complex ecological systems are 
causally related. Thinking through the entire natural his-
tory of a system to design an analysis that accounts for all 
confounding variables is really hard, even for the most ex-
perienced researchers. We also might not know which con-
founding variables are most important to measure and control 
for to eliminate bias. As a result, causal inference from ob-
servational data is often dismissed as impossible, prompt-
ing the saying “correlation is not causation.” Thus, dealing 
with the problems created by not controlling for unmea-
sured confounders in our statistical analyses is a first- order 
challenge for inferring causation from observational data  
(Figures 1 and 2).

Omitting known but unmeasured, or unknown and un-
measured, confounding variables from a statistical analysis 
creates Omitted Variable Bias or OVB (Rinella, Strong, and 
Vermeire  2020; Wooldridge  2015). OVB results in estima-
tors yielding the incorrect magnitude—or even sign—of es-
timates (i.e., biased estimators). OVB can create spurious 
correlations or mask true causal relationships. OVB differs 
from measurement error in predictor variables, which pro-
duces a consistent bias towards zero and can be corrected for 
or modelled (McElreath 2020 chapter on measurement error; 
Schennach 2016). With OVB, we cannot know the magnitude 
or direction of bias without knowing all confounding variables 
in a system. As measuring, controlling for, and even knowing 
all potential confounding variables is nearly impossible in 
complex ecological systems (reviewed in Dee et al. 2023), we 
are always going to miss something, threatening the validity 
of causal inferences.

Do challenges from OVB mean that we should avoid using obser-
vational data for causal inference? No! Rather than discount-
ing and abandoning observational data for causal inference, 
we suggest that ecologists consider adopting well- established 
techniques from other disciplines, including economics, so-
ciology, epidemiology,  and computer science, that offer solu-
tions (Angrist and Pischke 2008; Heckman 2000; Hernan and 
Robins  2023; Holland  1986; Imbens and Rubin  2015; Morgan 
and Winship 2015; Pearl 2009; Robins 1989; Rubin 1974, 2005). 
These techniques aim to replicate, or get as close as possible to, 
a randomized experiment. Because these fields cannot always 
do experiments for logistical or ethical reasons—for instance, 
it is not ethical to force a person smoke cigarettes daily to quan-
tify the causal effect of smoking on dementia (Hernan and 
Robins 2023)—they have been developing tools to handle OVB 
for decades. Yet, these tools have been largely absent from the 
ecologist's toolbox until relatively recently, with some exceptions 
(Arif and MacNeil 2022b, 2023; Butsic et al. 2017; Dee et al. 2023; 
Dudney et al. 2021; Grace and Irvine 2020; Larsen 2013; Larsen, 
Meng, and Kendall  2019; MacDonald and Mordecai  2019; 
Rinella, Strong, and Vermeire  2020; Simler- Williamson and 

Germino 2022). If we, as a discipline, are to move to more wide-
spread use of observational data for causal inference, we need to 
carefully consider the problems of OVB, the techniques we can 
use to mitigate them, and their assumptions.

Here, we aim to provide a guide to readily accessible methods to 
cope with omitted variable bias (OVB) for ecologists. We begin 
describing the status quo for how ecologists most often deal with 
OVB. We then review tools for identifying potential sources of 
OVB before conducting a study or analysis, building on the foun-
dation of using directed acyclic graphs (Arif and MacNeil 2023). 
To illustrate the techniques, we present a motivating example of 
studying the effect of temperature on marine snail abundances. 
With this example, we outline sampling and statistical designs 
for dealing with OVB and demonstrate them with simulations. 
We compare the conclusions that would be drawn from the 
typical approaches an ecologist might take (e.g., mixed effect 
models, Bolker et al. 2009) to other statistical designs that can 
more adequately control for omitted variables. While common 
approaches produce statistically biased results, our simulations 
demonstrate the utility of the statistical designs that are underuti-
lised, if not novel, in Ecology. We provide guidance for choosing 
among these designs along with a hands- on tutorial with R code 
for prospective users (see Supporting Information S7 for worked 
examples). This paper complements recent reviews in Ecology 
of quasi- experimental methods (Arif and MacNeil 2022b; Butsic 
et al. 2017; the appendices of Dee et al. 2023) by expanding on 
cross- sectional and panel regression designs (see study design 
section for definitions) accounting for OVB.

2   |   How Are Ecologists Coping With Omitted 
Variables Bias?

Confounding variables and omitted variable bias are commonly 
dealt with in one of five ways in Ecology. First, Ecologists use 
randomised controlled experiments. In an ideal randomised 
controlled experiment, the effect of confounding variables is 
eliminated when design assumptions are met. We can interpret 
observed effects of manipulations as causal [but see Kimmel 
et al. (2021) on why this can be difficult in practice, particularly 
in the field]. Random assignment of treatments (e.g., nitrogen 
addition) to units (e.g., plots) means that the treatment and con-
trol groups have the same level of any confounders on average. 
However, randomised controlled experiments are not always 
feasible, especially at large scales, and can impose experimen-
tal conditions that create artefacts which make generalising to 
natural systems difficult (Ruesink 2000; Stachowicz et al. 2008; 
Wolkovich et al. 2012). Second, in observational studies, ecolo-
gists attempt to remove effects of confounding variables by mea-
suring and controlling for them in statistical analyses such as 
multiple regression. Yet, as described above, measuring all con-
founders is often impossible—particularly in retrospective anal-
yses where existing data have been collected for another purpose. 
Moreover, all potential confounders might not be known. Third, 
ecologists use mixed- effect models. These mixed models fold 
unmeasured, cluster- level variables into random effects (Bolker 
et al. 2009; Harrison et al. 2018; Schielzeth and Nakagawa 2012). 
As discussed below (see section on statistical designs), if random 
effects are correlated with causal drivers of interest, random ef-
fect estimators are biased. Fourth, Ecologists sometimes make 
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causal claims rooted in their knowledge of natural history. These 
claims can be problematic due to a lack of transparency and po-
tential for incorrect statements about effect sizes; even the most 
accomplished naturalist can have gaps in their understanding of 
a system. Fifth, ecologists often qualify their results verbally to 
avoid making causal claims—even when their research focus is 
causal understanding, rather than description (but see Laubach 
et al. 2021). This practice muddies the waters and can create con-
fusion over whether an author is claiming an association or im-
plying causation while allowing themselves plausible deniability. 
We feel that, given our current need to understand causal rela-
tionships at large scales, these solutions are inadequate. In the 
worst case, they can lead to misleading inferences. So, we turn to 
solutions from other disciplines to the problem of omitted vari-
able bias to augment our toolkits.

3   |   Using Causal Diagrams to Clarify Causal 
Assumptions and Ferret Out Omitted Variables Bias

Causal diagrams (a.k.a.  Structural Causal Models from Pearl 
1995; see Grace and Irvine  2020; Arif and MacNeil  2023 for 
introductions for Ecologists) are the first tool for identifying 
omitted variable bias (Arif and MacNeil 2023; Pearl 1995; Pearl, 
Glymour, and Jewell 2016). Causal diagrams in the form of di-
rected acyclic graphs (DAGs, see Box 1 and Supporting informa-
tion S1) visualise our understanding of causal relationships and 
confounding variables within a system. In doing so, DAGs trans-
parently clarify assumptions behind our causal claims about 
relationships inferred from data and show potential sources of 
bias from confounding variables and other types of variables 
(see Box 1). Critically, DAGs are assumed to include all common 
causes of a cause and response of interest, including all mea-
sured and unmeasured confounding variables (Pearl 1995). We 
suggest drawing DAGs before conducting a causal analysis—
and, if possible, before data collection to inform which covari-
ates might be confounding to measure.

After building a DAG (see Box  1), one can determine potential 
sources of omitted variable bias, including from unmeasured con-
founding variables (e.g., U in Figure 1B), or potential “back doors” 
for confounding variation to flow between the causal variable and 
response variable (Pearl 2009). Said another way, omitting a con-
founding variable like U in Figures 1B and 2 that influences both 
X and Y in a statistical analysis means that it is folded into a sta-
tistical model's error term, along with random sources of error. 
Figure 2 illustrates the consequences of failing to control for U: 
the model's error term and causal variable are correlated, thereby 
producing an incorrect estimate of the effect of X on Y (Figure 2). 
This correlation is due to the causal variable (X) being endoge-
nous—it is affected by elements in the error term. This endog-
eneity problem violates the assumptions of the Gauss- Markov 
theorem and its extensions (Wooldridge 2015) and underlies OVB 
(Abdallah, Goergen, and O'Sullivan 2015; Antonakis et al. 2010).

To provide an example, consider studying the effect of nitrogen 
availability (X) on plant biomass (Y) across multiple fields, but 
nitrogen availability (X, as in Figure  2A) depends on field soil 
characteristics (U), and field soil characteristics also drive plant 
biomass (Y). If field soil characteristics were omitted from a statis-
tical analysis, then (1) the effects of soil characteristics would be 

included in the error term of that model (Figure 2Biii) so that (2) 
nitrogen is no longer exogenous (external to the system of interac-
tions) but instead endogenous, and (3) the effects of field- level soil 
characteristics are misattributed to nitrogen, leading to incorrect 
estimates of nitrogen on plant biomass. Therefore, the estimate of 
the nitrogen effect will be wrong: different from the true effect in 
magnitude or even sign (Figure 2C). As discussed below, including 
field as a random effect does not resolve this problem. If we had 
drawn a DAG, we could have seen where endogeneity problems 
like this occurred and identified options to address them.

Finally, DAGs also justify choices of control variables; they make 
transparent the assumptions a researcher makes about how a sys-
tem works for the readers of their work. However, DAGs, like our 
understanding of a system, can be incorrect or not include un-
known confounding variables. While they provide a useful tool, 
a DAG only represents a researcher's current understanding and 
own assumptions about the causal relationships within a system. 
Even without the correct DAG, recognising the possibilities for 
unmeasured confounders enables leveraging complementary ap-
proaches that lessen our reliance on a perfectly correct DAG to 
control for confounders. Using a case study of snails influenced 
by temperature, we review these approaches that combine obser-
vational sampling designs with statistical designs to control for 
unobserved and potentially unknown confounding variables.

4   |   Case Study: A Problem of Omitted Snails

To illustrate the empirical challenges of unobserved confounding 
variables and potential solutions, we consider a marine benthic 
ecosystem modelled after the Gulf of Maine, USA, where a re-
searcher aims to study the causal effect of temperature on snail 
abundance. They hypothesize that temperature affects snail 
metabolic and mortality rates and wish to estimate the effect of 
temperature on snail population abundance. Snail abundance is 
also driven by recruitment, in part influenced by regional ocean-
ography (i.e., the flow of major currents which across space). 
Oceanography drives both water temperature and recruitment 
patterns (Broitman et al. 2005; Yund et al. 2015). We assume that 
snail abundance and temperature were measured at several sites 
but not recruitment or oceanography. Thus, recruitment and 
oceanography are unobserved confounding variables. Estimates 
produced from a statistical analysis of just the temperature- snail 
relationship will almost certainly be wrong. Even if the researcher 
had measured recruitment and added it to a regression, other con-
founding variables could lurk and omitted variable bias remains 
a real possibility. The estimated effect of temperature on snails 
could still be incorrect. Fortunately, our researcher drew a DAG 
(Figure 3A) and recognised that temperature at the scale of a sin-
gle observation was also influenced by local variation (e.g., from 
many sources of microclimatic variability). They realised that 
they could control for both observed and unobserved confound-
ing variables with appropriate sampling and statistical designs.

5   |   Sampling Designs That Enable Statistical 
Methods to Cope With Omitted Variable Bias

Multiple sampling designs for data collection enable the use of 
statistical designs that can address omitted variable bias from 
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confounding variables that vary across space, time, or both. A 
key feature in these sampling designs is some hierarchical or 
clustered structure to the data. Clustered data is often also re-
ferred to as a hierarchical or nested sampling design (Gelman 
and Hill 2006). We use these terms interchangeably. The nest-
ing of multiple observations within a cluster or group (e.g., site) 
can allow the causal variable of interest to vary across repli-
cates within a cluster while the confounder varies between 
clusters at the cluster level (Figure  4). This within- between 
partitioning of variation enables us to control for confounding 
variation.

Clustered sampling designs can take several forms and generate 
different types of variation to study. First, a sampling design could 
include multiple plots sampled within sites at a single point in time 
(Figure 4A)—called a cross- sectional design. When sites span 

environmental gradients with variation in a causal variable (e.g., 
temperature differences), confounding variables also vary across 
these spatial gradients. For instance, a spatial gradient in tempera-
ture across sites also reflects the spatial gradient in oceanography, 
confounding the effect of temperature and snails. However, with 
data collected from a cross- sectional sampling design of plots 
within multiple sites, we can use variation in plot- level tempera-
ture within sites to remove the confounding effects of between site 
differences (e.g., site- level oceanographic features).

Second, one could sample the same plots or sites repeatedly 
through time (Figure 4B) creating longitudinal or panel data. 
Panel data generates variation within sites through time; it en-
ables the use of approaches that removes confounding varia-
tion between sites, enabling causal inference on within- site (or 
plot) variation through time. Developing an understanding of 

BOX 1    |    An overview of directed acyclic graphs for causal analysis and detecting confounders.

Causal diagrams (e.g., Figure 1), called Directed Acyclic Graphs (DAGs), help to determine where confounding variables might 
cause omitted variables bias and, in turn, to identify solutions in terms of sampling and statistical designs. In DAGs, assumed 
causal relationships among variables are implied by arrows with the direction of the arrows representing the direct of the causal 
effect. If the value of a causal variable of interest changes (e.g., via manipulation, exposure, or a natural process), there will be 
a concomitant change in the response variables it affects. In DAGs, these relationships are non- parametric, without functional 
form. Critically, for a DAG to be complete, it should include both measured and unmeasured confounding variables. We represent 
observed variables that can be or have been measured with boxes (e.g., X and Y in Figure 1), and unobserved (i.e., unmeasured) 
variables within ellipses (U and Z).

DAGs help identify how and when to control for confounding variables. With a DAG, confounding variables can either be visually 
obvious or identified via software analysing conditional independence among variables (e.g., Textor et  al.  2016). Confounding 
variables can be included and controlled for directly in a statistical model or by controlling for a “child node” of that confounding 
variable (e.g., U as a child of Z in Figure 1C or see Figure S1 for examples). Controlling for confounding variables helps satisfy the 
back- door criterion (Pearl 1995, Figure S1A) for causal identification. That is, including variables that block all paths flowing 
from a common cause (e.g., U in 1B or Z in 1C) to both a causal variable of interest (X) and its response (Y) to “shut the back door” 
for causal information to flow between X and Y having nothing to do with their causal relationship. By “shutting the back door”, 
the estimate of the relationship between X and Y is then causally identified. Without controlling for confounding variables or others 
that block their influence in an analysis (e.g., see Figure S1), omitted confounders will cause OVB. A DAG also reveals where it is 
not possible to “shut the back door” due to unmeasured confounders, showing that other approaches—those presented in this man-
uscript, instrumental variables, Pearl's “front door criterion,” etc.—are needed (Pearl 2009; Bellemare, Bloem, and Wexler 2024).

DAGs also show what variables should not be included in an analysis, such as those causing collider bias or are otherwise bad 
controls (e.g., conditioning on mediator variables on the causal path from X to Y). Collider bias occurs when evaluating a relation-
ship between two variables, but conditioning on a variable they both cause. For example, conditioning on plant abundance when 
analysing the relationship between disturbance intensity and herbivory intensity, but both causes plant abundance. In contrast, 
model selection metrics such as AIC—for predict versus causal aims—might favour including colliders or other bad controls (Arif 
and MacNeil 2022a). Here, we focus on bias from omitting important variables rather than including the wrong variables. This 
topic has been amply covered elsewhere (see McElreath 2020, Chapter 6; Laubach et al. 2021; Griffith et al. 2020).

DAGs are different than path models or other graphical depictions of statistical models more common in Ecology (e.g., Structural 
Equation Models). Both seek to show directional connections between variables but differ in several ways. (1) DAGs only repre-
sent causal relationships; path models can be causal or not. Path models can be used for non- causal aims and include unexplained 
correlations as double- headed arrows and other elements of error generating processes. (2) DAGs must include all common causes 
of the causal variable of interest and response for causal identification. (3) DAGs are non- parametric and not tied to an estimation 
approach; path models represent an algebraic representation of a system in the form of a statistical model. (4) Path models can 
include feedbacks and cycles, whereas DAGs are acyclic (see Suppoting Information S2 for a discussion of feedbacks and DAGs). 
To show the links between DAGs and statistical models, here we present both DAGs and path models (e.g., Figure 2).

As applied researchers, we have found that DAGs, paired with robust statistical approaches for causal inference, clarify our own 
thinking and communication about ecological systems. Further, when multiple different theories suggest different DAGs, they 
can still be used to identify potential sources of confounding for analyses. For researchers interested in exploring possible DAGs 
or evaluating DAGs given some constraints, we refer readers to the field of causal discovery (Glymour, Zhang, and Spirtes 2019).
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FIGURE 3    |    A causal diagram describing the controls of snail abundance in an intertidal ecosystem and path models of a random effects models 
ignoring the random effects assumption. In the system in (A), oceanography drives both temperature and recruitment, and both drive snail abun-
dance. Temperature, however, is also driven by local influences as well. This could be variability in plot- level temperature within a site—i.e., sources 
of variation in microclimate—or site- level temperature variability over space or time uncorrelated with local oceanography, recruitment, or other 
site-  or plot- level confounders. The mixed effects model with a random effect for site in (B) assumes that there are no site- level drivers of temperature 
and does not account for the relationship between site and temperature. Site effects here are site- level residuals drawn from a normal distribution 
as in Equation (3). As error variables are unobserved, we include them in an ellipse as with other unobserved variables. Thus, the effect of tempera-
ture on snails is confounded by any correlated site- level drivers that correlate with temperature at the site level. The assumption of no relationship 
between site and temperature contrasts with the violation of endogeneity highlighted in (C) showing that temperature is indeed at least partially 
driven by site. When we fit a mixed model, the red path in (C) is not included, creating an endogeneity problem and violating the Random Effects 
assumption. Said another way, our site- level random effect is not endogenous, and thus the random effects estimator is biased (see simulations below 
and Figure 6 to see the biased estimates produced by a random- effects model).

FIGURE 4    |    Visual examples of hierarchical study designs with plots nested within sites sampled at one point in time in A and through time in B. 
This figure shows sites distributed along a coastline with a corresponding thermal gradient, with one or more plots sampled within each site, depend-
ing on the design. Open squares are sites. Closed squares are plots within sites. Colour of square is proportional to temperature, with red and blue 
signifying warm and cold respectively and other colours placed on a gradient between them. These sampling designs therefore have variation across 
space, as in the cross- sectional sampling design in A, or in both space and time as in B. which shows longitudinal or panel data, where the same plots 
within sites are observed through time. The sampling design in (A) can allow researchers to study temperature variation within sites as well as be-
tween sites. The design in (B) enables a researcher to leverage variation in space and time, including examining variation within sites through time.
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how cross- sectional and panel data structures, and extensions 
(Box 2 and Supporting Information S3), can be used with sta-
tistical designs to remove confounding variation is key to con-
fronting OVB.

6   |   Statistical Designs to Cope With Omitted 
Confounders

With hierarchical or clustered (hereafter clustered) data and a 
DAG in hand, we turn to well- established statistical designs to 
control for unobserved confounding variables. We emphasise 

the term ‘designs’ over ‘methods’ because one could implement 
these statistical designs using a variety of estimation approaches 
(e.g., linear regression, generalised linear models, as a part of 
structural equation models, or with Bayesian techniques). These 
designs (see Table S1 for all design equations and definitions of 
terms) have different costs and benefits and differ in their as-
sumptions required for interpreting an estimate as a causal ef-
fect (see Table S2). Yet, most of the following designs—with the 
exception of random effects models as shown below—allow us 
to flexibly control for both known and unknown confounding 
variables (see Angrist and Pischke  2008; Dudney et  al.  2021; 
Ferraro and Miranda  2017). They are also straightforward to 

BOX 2    |    Reality bites: coping with spatiotemporal omitted confounders.

Spatiotemporal confounding variables—those that are site (or plot) specific and vary through time—pose challenges, and the solu-
tions require more thoughtful study designs. To illustrate, we consider a scenario where recruitment, a confounding variable related 
to both snail abundance and temperature, is not static through time but instead varies by site and year. For example, sites that expe-
rience strong cold- water pulses in a year also experience unusually high snail recruitment in those same years due to oceanographic 
drivers. The sampling designs for coping with spatiotemporal omitted variables are based on the same principles as cross- sectional 
and longitudinal sampling, only now we combine the two to include plots within sites that are sampled through time.

Using longitudinal data with multiple plots sampled within a site through time, we can flexibly control for spatiotemporal con-
founding at the site level by extending the two- way fixed effect designs discussed above. We can add a site- by- time fixed effect, 
�ij, to our model, in addition to a fixed effect of plot, �k, where k is a fixed plot within site resampled over time (see below for a 
discussion of fixed versus re- randomised plots and Tables S1 and S2 for more on model terms and assumptions). This produces 
the following means model (i.e., not using dummy coding but just the means for the fixed effects):

From this equation, we can see that �k captures time invariant plot- level confounding effects while �ij captures the effects of spati-
otemporal omitted variables at the site by time level. See Table S1 for exact coefficient definitions. Note, there could be additional 
spatial or temporal only confounders. This design sweeps their effects onto the spatiotemporal term.
In small datasets, the above model design can consume degrees of freedom rapidly. In datasets with insufficient power, we can 
instead use the correlated random effects (e.g., a variation on the Two- way Mundlak model design sensu Wooldridge 2021) which 
are more efficient. Correlated random effect use site- year means (xij) and plot means (xk) of temperature for the entire survey to 
control for spatiotemporal and plot confounding respectively:

Here the �k and �ij terms are random effects for plot and unique site- time combinations respectively.

When sampling to handle spatiotemporal confounders, should plots within sites over time be permanent or randomly placed each 
year? The above models assume permanent plots, so we can eliminate confounding variables at the plot- level that is time invar-
iant over the study period. For this reason, permanent plots help us cope with within- site OVB issues and have higher power to 
detect change over time (Urquhart and Kincaid 1999). Logistically, however, permanent plots within sites might not be possible. 
As such, the above models can be modified to drop plot effects; however, they would then assume that there are no confounding 
differences across plots and could have lower power to detect effects of drivers. We emphasise that the choice of fixed or random 
plot placement with these designs is a balancing act, however, as fixed plots can lead to a lower sample size due to logistical con-
siderations in many environments, and direct readers to other explorations of this topic (e.g., Gomes 2022).

Finally, without variation within sites as well as through time—e.g., multiple plots sampled within sites each year—we cannot in-
clude a site by year effect as in the above models. We can attempt to use site- level time trends (e.g., as linear or polynomial trends) 
as in Dee et al. (2016) or trends generated from Generalised Additive Models (Wood 2017) to approximate site- by- time effects, 
but this approach requires stronger assumptions about how confounders vary across sites over time. Therefore, we recommend 
researchers test the robustness of these assumptions. In cases without multiple plots per site sampled over time, researchers can 
use sensitivity tests (Oster 2019) or partial identification (Ghassami, Shpitser, and Tchetgen 2024; Miao, Geng, and Tchetgen 
Tchetgen 2018) to get the bounds of estimates. In situations where these bounds are wide, however, without multiple plots per site, 
then, “nothing to be done” (Beckett 1954).

In general, we urge caution when dealing with spatiotemporal omitted variables, and careful use of causal diagrams to ensure 
that we are controlling for confounders at the relevant spatiotemporal scale. This topic deserves far more exploration in Ecology.

yijk = �1x1ijk + �k + �ij + ϵijk

yijk = �0 + �1xijk + �2xk + �3xij + �k + �ij + �ijk
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implement (as demonstrated in Supporting Information  S7). 
Thus, we believe they are a key advance worth consideration 
by ecologists.

We illustrate how each design works using a common set of 
terms for a causal variable of interest (x; e.g. local temperature), 
the outcome or response variable (y; e.g. snail counts), and con-
founding variables (w; e.g. recruitment) in a regression. We con-
sider data from different sites (i) sampled either at multiple time 
points in panel design or in multiple plots ( j) in the case of a 
cross- sectional data design as above. For the sake of simplicity, 
we assume a linear model form with normally distributed error 
(ϵ), although the framework also applies for generalised linear 
models. The model takes the form of

where yij is the abundance of snails at site i in year or plot j, �0 is 
the intercept—the abundance of snails if the temperature and 
recruitment were 0, �1 is the effect of temperature xij at site i in 
year or plot j on snails, � is the effect of recruitment wi at site i 
on snail abundance, and ϵij is other driver of snail abundance. 
Due to shared oceanographic influences, xij and wi are cor-
related. Thus, we have a confounding variable that varies spa-
tially, across sites, and is correlated with average site temperature 
affecting snail abundance. Our goal is to estimate �1 (the effect 
of temperature on snail abundance) and eliminate the effect of 
confounding variables (and resulting bias).  If we had measured 
wi, we could include it in a model, and by conditioning w, iden-
tify the effect of �1 assuming no other confounders. Table  S1 
explains coefficient definitions for all models.

Without measuring and controlling for the confounder, wi, as 
above, we would instead fit the following naïve regression with 
only the abundance of snails (yij) as a function of temperature 
(xij) and random error:

Here, temperature (xij) is endogenous—correlated to the error 
term; wi is implicitly included in the error term, creating omitted 
variable bias. Due to omitted variable bias, our causal inference 
about �1 would be incorrect: different from the true causal effect.

6.1   |   What Ecologists Typically Do: Random 
or Mixed Effects Models That Fail to Solve OVB

Mixed effect models have been popular in Ecology for the past 
two decades (for useful reviews, see Bolker et al. 2009; Schielzeth 
and Nakagawa 2012; Harrison et al. 2018). Originally used to 
partition variation in heritability between different relatives 
(Fisher 1919), random effects—the effects of clusters in data 
assumed to come from a random distribution [but see Gelman 
and Hill (2006) on the linguistic ambiguities surrounding fixed 
and random effects]—quickly became a mainstay in the parti-
tioning of variation in randomised experiments with subsam-
ples taken within clusters (Cochran 1937; Eisenhart 1947). They 
have become a standard part of the toolbox for analysing eco-
logical experiments (Schielzeth and Nakagawa  2012) and are 
frequently used when analysing observational data in Ecology.

Random effects account for clustering in data via the error struc-
ture of the model (Bolker et  al.  2009; Gelman and Hill  2006), 
rather than estimating cluster means as part of the data generat-
ing process of a model (i.e., via fixed effect for each cluster's mean, 
using the terminology of the mixed models literature). This re-
sults in gains in efficiency (i.e., costing fewer degrees of freedom). 
As random effects are assumed to be drawn from a common dis-
tribution, they also have benefits for analyses of unbalanced sam-
ples and for regularising cluster means (i.e., shrinkage, drawing 
them towards the grand mean, see Efron and Morris 1975).

For these reasons, ecologists conducting a study akin to our 
snail- temperature example could gravitate towards a mixed ef-
fect model to account for variation between sites in snail abun-
dances, using a mixed effects model such as:

All coefficients are as in Equation (2) (see also Table S1), with the 
addition of �i, the random effect—a site- specific deviation of site i 
from the common intercept, �0, due to variation assumed to follow 
a normal distribution with a mean of zero and variance of �2

site
. 

However, if site is both a random effect and correlated with tem-
perature, we cannot resolve the problem of OVB with this design.

6.2   |   What Assumptions Are Random Effect 
Design Making When It Comes to Omitted Variable 
Bias?

Why do random effect designs suffer from omitted variable bias 
with the above model not controlling for omitted confounders via 
its site random effect? To understand this problem, remember 
that, when using random effects, we are not estimating the ef-
fects of group means per se (Robinson 1991). Rather, we are mod-
elling correlation in our error structure based on groups (Bolker 
et  al.  2009; Schielzeth and Nakagawa  2012; Wooldridge  2010). 
This difference results in several efficiency gains and benefits dis-
cussed above but requires stricter assumptions for causal inter-
pretation of estimated effects that are not often considered. The 
Random Effects Assumption—a variation on the assumption 
of no endogeneity—states that for the random effects estimator 
to be unbiased, the random effects, which are part of the error 
term, must not be correlated with any covariates in the regres-
sion (Antonakis, Bastardoz, and Rönkkö 2021; Wooldridge 2010). 
Using a mixed model for the snail data assumes that the random 
effect of site of is uncorrelated with temperature (Schielzeth and 
Nakagawa 2012; Wooldridge 2010). Given our DAG, we know this 
assumption is false; the model will not be causally identified and 
estimates of �1 will be biased. Figure 3 shows this violation of the 
random effects assumption graphically with a path diagram for a 
model with the random effect model in Figure 3B,C. We posit that 
violations of the random effect assumption are likely common in 
Ecology—particularly in observational data that spans environ-
mental gradients. The frequency and consequences of violating 
this assumption for Ecology is neither well explored nor acknowl-
edged widely enough. We need solutions that require weaker as-
sumptions that are less easily violated.

(1)yij = �0 + �1xij + �wi + ϵij

(2)yij = �0 + �1xij + ϵij

(3)

yij=�0+�1xij+�i+ϵij

�i∼
(

0, �2
site

)

ϵij∼
(

0, �2
)
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6.3   |   Enter the Econometric Fixed Effects Design

The Econometric Fixed Effects Design represents a familiar 
starting point for many ecologists used to using categorical vari-
ables in ANOVA and ANCOVA (e.g., Gotelli and Ellison 2012). 
Unfortunately, there are many uses of the term “fixed effect,” 
leading to a wealth of confusion across fields (Gelman and 
Hill 2006). Here, we use the term “fixed effect” as drawn from 
the econometrics literature, where it refers to attributes of a sys-
tem (e.g., site, plot, or year) that vary by cluster (i.e., a within 
cluster intercept) that are encoded in models as dummy or cat-
egorical variables (e.g., representing sites or other descriptors 
of how our data is clustered). We also use “fixed effect” in the 
language of the mixed model literature—that is, that the cluster 
means are estimated as part of the data generating process of the 
model, not as part of the random error component.

Recognising that confounding variables vary at the cluster level 
(e.g., site), we have three options to flexibly control for the effects 
of confounding variables. First, we can use a bit of algebra known 
as the within transformation or fixed effects estimator (Bell, 

Fairbrother, and Jones 2018; Wooldridge 2010) that is similar to 
within- subjects centering in Ecology (van de Pol and Wright 2009). 
To illustrate, we manipulate the following equation:

following notation of Equation (1), where xij is our casual variable 
of interest, but the error term is composed of idiosyncratic (ran-
dom error), ϵij, and ui, which represent differences across sites i 
including unmeasured confounding variables (see Table S1). As 
site- level confounders do not vary across within- site replicates, 
ui = ui. We can use this to our advantage via the fixed effect 
transformation. For this transformation, we remove the effect 
of site- level confounding drivers, by subtracting the site- level 
average value of y − yi–from both sides of the equation. On the 
right- hand side, we can average over all terms at the site level to 
subtract �0 + �1xi + ϵi + ui which leads to a transformed model.

(4)yij = �0 + �1xij + ϵij + ui

(5)
yij−yi = �1

(

xij−xi
)

+

(

ϵij−ϵi

)

+

(

ui−ui
)

= �1
(

xij−xi
)

+

(

ϵij−ϵi

)

FIGURE 5    |    Path diagrams of different statistical models handling omitted variables in the text. (A) and (B) show two variations on the economet-
ric fixed effect model design corresponding to Equations (5) and (6) respectively. (C) represents the group mean covariate design in Equation (7) and 
(D) represents the group mean centered design from Equation (8). Finally, (E) shows the first differencing approach from Equation (9) and (F) the 
second differencing approach. As the true error variables are unobserved, we include them in an ellipse.
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We have algebraically removed the confounding influence of 
time- invariant site- level confounding variables contained in  
ui—whether they were observed or not.

Second, to achieve the same effect as this fixed effect trans-
formation (see Figure 5A for a path diagram of the model), we 
could use a dummy variable for each cluster (i.e., a 0/1 encoding 
of x2i for each cluster, an econometric fixed effect) multiplied by 
the cluster mean, �i, or simplify the equation to just use cluster 
means, �i, as a categorical variable per site as in Figure 5B. This 
is merely two ways of writing the same model.

Unlike random effects in a mixed model design, �i is not con-
strained to be drawn from a predefined probability distribu-
tion. These designs will control for omitted variable bias from 
site- level observed and unobserved confounding variables and 
produce identical results to the preceding model for �1 (Angrist 
and Pischke  2008; Wooldridge  2010), which we demonstrate 
with simulations below. While these two versions of the fixed 
effect design look different, they are equivalent (Angrist and 
Pischke 2008; Wooldridge 2010).

Fixed effect designs allow us to relax the strong assumption 
that all confounding variables are observed, measured, and in-
cluded as covariates in models for a causal interpretation of �1 
when other assumptions are met (see Section 5). For ecological 
examples, see Larsen  (2013), Dee et  al.  (2016, 2023), Dudney 
et al. (2021), and Ratcliffe et al. (2023).

Fixed effect designs have some drawbacks despite their sim-
plicity and strength in controlling for both observed and un-
observed confounding variables. First, while these estimators 
make much weaker assumptions about confounding variables, 
they are inefficient compared to random effects. For each fixed 
effect (e.g., site), we estimate a separate coefficient. Estimating 
more parameters eats up degrees of freedom, requiring a larger 
sample size to achieve the same level of precision as random ef-
fects. This phenomenon creates a bias- variance trade- off (Bell, 
Fairbrother, and Jones 2018). If one's goal is causal inference, 
minimising bias is critical; thus, fixed effect designs are pref-
erable over a mixed- effects model (see simulation results in 
Table 1 and Figure 6). Finally, with the fixed effect approach, 
we lose information about between- site variation, including 
gradients between sites that may be of interest. The fixed ef-
fects absorb this variation. These gradients, while confounded 
with other variables, could be the focus of some research ques-
tions that cannot be easily addressed using fixed effect designs.

6.4   |   Group Means for Efficiency, Inference, Fun, 
and Profit

To study between- site variation and mitigate the loss of ef-
ficiency from the fixed effect design, we can instead use cor-
related random effects  designs (using terminology of 
Antonakis, Bastardoz, and Rönkkö  2021). Correlated random 
effect designs use group means of our causal variable of interest 

to control for confounding variables. For each cluster (e.g., each 
site, year), researchers calculate a group mean of the causal vari-
able of interest (e.g., average temperature of a site) and include 
it as a group- level predictor. These group means of the causal 
variable control for the effects of confounders at the cluster level 
by acting as a proxy for confounders.

One correlated random effect design is the Mundlak Device 
(Mundlak 1978) and has many extensions (e.g., Wooldridge 2021). 
For clarity, we term it a Group Mean Covariate design, as in 
the following equation:

where �2xi with xi as the average site temperature accounts for 
the effect of cluster- level confounders and �i is a random effect 
of that cluster (i.e., site, other coefficients are as before or see 
Table S1). From the path model in Figure 5C, we can see the site 
mean temperature is statistically controlled in estimating the 
within- site temperature effect.

Using group means of our causal variable enables us to esti-
mate a coefficient for between- cluster effects (e.g., between 
sites, �2) called a contextual effect (Antonakis, Bastardoz, 
and Rönkkö 2021). These coefficients contain a combination of 
causal and confounded effects and are not causally identified. 
They should not be taken as strong evidence supporting or re-
futing a particular hypothesis. The coefficient for the contextual 
effect, here site mean temperature, quantifies how changing 
the mean temperature of a site—and all properties that cor-
relate with site mean temperature—affects snail abundance if 
temperature within a plot stayed the same. For example, if our 
plot was 10°C, what would snail abundance be if that plot was in 
a site with an average temperature of 5 versus 20°C? If the con-
textual effect is 0, we can conclude that a simple mixed- effect 
model would suffice and omitted variable bias was not sub-
stantial in this particular analysis (Antonakis, Bastardoz, and 
Rönkkö 2021).

The group mean covariate design will run into problems, how-
ever, if the correlation between our causal variable of interest 
and its cluster- level mean is too high. To overcome this issue, 
we can instead use a Group Mean Centering design, which 
transforms our causal variable to remove this correlation. Group 
mean centering subtracts the cluster- level mean from the causal 
variable of interest: 

(

xij − xi
)

. In our example, we subtract the 
site's average temperature across the whole time series from the 
observed temperature for each year at each site (see Figure 5D). 
After this transformation, we use this cluster- level centered vari-
able (i.e., within cluster anomaly) as our predictor variable of 
interest with �1 estimating the effect of a 1° change in anomaly. 
We control for cluster level mean—which includes confounding 
effects—as follows:

Equation  (8) decomposes our causal variable of interest into 
between-  and within- cluster terms, �2 and �1, respectively. 
This is an approach already in use in Ecology (van de Pol and 

(6)
yij=�1x1ij+

∑

�ix2i+ϵij

=�1x1ij+�i+ϵij
(7)

yij=�0+�1xij+�2xi+�i+ϵij

�i∼
(

0, �2
site

)

ϵij∼
(

0, �2
)

(8)yij = �0 + �1
(

xij − xi
)

+ �2xi + �i + ϵij
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Wright 2009). The coefficient of the site mean temperature, �2, 
is now the between- site effect of temperature and confounders. 
The coefficient, �1, is the within- site temperature effect and is 
the same as previous models (Table  S1). The interpretation of 
�2 is different than in the group mean covariate design. �2 for 
our snail example is a between estimator of the combined ef-
fect of moving across gradients in temperature and correlated 
drivers between the sites while holding anomaly constant. For 
example, if we moved from a site with a 5°C average tempera-
ture to one that was 10°C, how would snail abundance change 
in a plot holding anomaly constant? If the anomaly was 1°C, this 
would be a comparison between plots that were 6° at one site 
and 11°C at another. However, the result could be very different 
than comparing plots that were 6° and 11°C from the same site. 
If �2 = �1, omitted variables are not meaningfully influencing 
snail abundances; both the between and within site differences 
are due solely to temperature or multiple confounders have can-
celled one another out.

The group mean covariate, group mean centered, and fixed ef-
fects designs all differ in structure but will yield the same point 
estimates of �1 (Figure 6, Table 1) under most conditions and with 
balanced data (see simulations below and Wooldridge  2010). 
Mundlak  (1978) showed that correlated random effects and 
fixed effects are algebraically identical in linear models and 
only differ in their inferences. Thus, one might ask: which de-
sign should I use? This decision depends on the structure and 
size of one's data (e.g., how many coefficients do you have the 
power to estimate given your sample size) and the question of 
interest (e.g., are you interested in between- site differences?). 
For example, do you have many sites and are only interested in 
the causal effect of temperature? Fixed effects design. Do you 
want to know how plot- level snail abundance would change 
if the average site temperature changes, but plot temperature 
stays the same? Group mean covariate design. Do you want to 
understand the effects of temperature while examining the net 
effect of many variables shaping between- site gradients? Group 
mean centered design. Each design can further be extended to 
cases where the magnitude of the causal variable of interest's 
effect is moderated by the level of confounding variables (i.e., 
an interaction between unobserved confounders and our causal 
variable of interest—see Supporting Information S3: A Difficult 
Slope: Omitted Variables that Cause Variation in the Magnitude 
of the Causal Effect).

Finally, for all of these designs, we note that accounting for se-
rial correlation, heteroskedasticity, and clustering of the error 
through cluster robust standard errors or random effects at the 
cluster level are important for standard error estimation and 
thus inferences (Abadie et al. 2017; Cameron and Miller 2015). 
For more, see Supporting Information S4.

6.5   |   What a Difference Differencing Makes

Our examples thus far have focused on unobserved confound-
ing variables that vary across space (i.e., between sites) rather 
than time. Time can be difficult, as it can enter the picture in 
several different ways. In the case of omitted confounders vary-
ing solely across time and not space, we can extend the frame-
works presented above, using years rather than sites as clusters. 

If time- varying confounders are uniform across sites, then we 
can use an econometric fixed effect of time and an economet-
ric fixed effect of space (a two- way fixed effect a.k.a. TWFE, 
Wooldridge  2021) and extensions (Roth et  al.  2023) or a site- 
average of predictors and a time- average of predictors (a two- 
way Mundlak model design; Wooldridge 2021).

If, however, temporal confounders differ by site, we need a more 
general solution. If our causal variable of interest has the same 
trend over time as temporal confounders, we can use temporal 
differencing. For example, consider ocean warming along-
side coastal development at our sites (Figure S2) with develop-
ment increasing over time, like warming, but varying in rate 
between sites. To separate these correlated drivers, we can use 
a first- difference design (Figure 5e). We subtract all drivers 
and responses in year j from their value in year j − 1 (i.e., Δyij 
is change in snail abundance at site i between year j and j − 1). 
We illustrate this showing the subtraction to produce the first 
differences model:

Here, �i is the slope of the site- specific temporal confounder. 
Spatial confounders are eliminated algebraically, just as in 
the fixed effect transformation. Finally, if we are uninterested 
in site- specific trends, we can calculate the second differ-
ence Δ2yij = Δyij − Δyi,j−1 eliminating the need to estimate �i 
(Figure  5f). While both designs control for temporal and spa-
tial confounding, they cost 1–2 years of data. Finally, if omitted 
confounders vary spatiotemporally without trends or spatial and 
temporal confounders interact, we can extend the principles dis-
cussed here to more exotic designs (see Box 2).

7   |   Comparison of Approaches

To demonstrate the utility of the preceding solutions and the 
consequences of not using them, we fit a variety of models to 
simulated data based on a longitudinal study of snail popula-
tions at multiple sites based on Figure 2. Snail abundance at site 
i in year j is a function of recruitment, temperature, and other 
unobserved confounded drivers. For a single simulation run, 
we created a system as follows, simulating 10 sites over 10 years 
using a panel sampling design with:

• Oceanography as a random normal variable with a mean of 
0 and standard deviation of 1. Oi ~ N(0, 1).

• Site mean recruitment calculated as −2 multiplied by the 
oceanography variable and then rescaled to have a mean of 
10 individuals per plot (e.g., so it does not go negative). It is 
the same in a site across all years. Ri | Oi = −2 Oi + 10

• Site mean temperature as calculated as twice the oceanog-
raphy variable and then rescaled to have a mean of 15C. Ti | 
Oi = 2 Oi + 15

• Site temperature in year j determined by site mean tempera-
ture and additional variation random normal variation with 
a mean of 0 and standard deviation of 1. Tij ~ N(Ti, 1)

(9)
yij−yi(j−1) =�1x1ij−�1x1i(j−1) +�ij−�i(j−1)+ϵij−ϵi(j−1)

Δyij=�1Δx1ij+�i+Δϵij
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• Snail abundance at site i in is determined in a given year as 
in Figure 2, as a function of recruitment, temperature, and 
other drivers; the effects of both temperature and recruit-
ment on snail abundance are 1. Other drivers are drawn 
from a random normal distribution with a mean effect of 0 
and standard deviation of 1. Sij | (Tij, Ri) ~ N(Tij + Ri, 1)

Simulation code and results from 100 simulated data sets are 
in Supporting Information S6 and at https:// doi. org/ 10. 5281/ 
zenodo. 13737990. We analysed each simulation run using 
all of the statistical designs above, including a naïve model 

with no site effect. We also included group mean covariate 
and group mean centered models with and without a ran-
dom effect of site to demonstrate the role of a random effect 
in estimating standard errors and handling unbalanced data. 
Supporting Information S7 uses Supporting Data S1 to anal-
yse one data set showing the simplicity of implementation. 
For an interactive exploration of the full suite of simulated 
data and parameters, see the web applications in Supporting 
Information S8 (for one simulated run alone) and Supporting 
Information  S9 (using replicated simulations to explore pa-
rameter distributions).

TABLE 1    |    Summary of simulation results comparing estimates from each study design compared to a naïve bivariate correlation.

Model type
Mean 

estimate
SD 

estimate
Fraction sims where 

95% CI contains 0
Fraction sims where 95% 

CI does not contain 1

Naïve 0.231 0.165 0.56 0.99

Random effects (RE) 0.640 0.232 0.08 0.54

FE using mean differencing 0.985 0.215 0.00 0.05

FE with dummy variables 0.985 0.215 0.00 0.05

Group mean covariate 0.985 0.215 0.00 0.05

Group mean centered 0.985 0.215 0.00 0.05

Group mean covariate, no RE 0.985 0.215 0.01 0.04

Group mean centered, no RE 0.985 0.215 0.01 0.04

First differences 0.971 0.259 0.01 0.12

Note: Mean and SD of point estimates of temperature effects from different models in the first two columns. Fraction of simulated runs where the mean ± 2 SE of the 
temperature effect either overlapped 0 (i.e., high likelihood of committing a type II error) or did not contain the true effect of temperature in the final columns. Models 
are as in Figure 6.
Abbreviation: FE, econometric fixed effects.

FIGURE 6    |    Distribution of point estimates of temperature effects from different models across all 100 simulations. The true effect size (=1) is 
highlighted with a dotted line. The y- axis labels correspond to the Naïve model in Equation (2), Random Effects (RE) model in Equation (3), the Fixed 
Effects (FE) models in Equations (5) and (6), the Group Mean Covariate models in Equation (7) and the Group Mean Centered models to Equation (8), 
and the First Differences model in the Equation (9). The Naïve and Random Effects models produce biased coefficient estimates on average, in con-
trast to all other methods.
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Our simulations show that the RE model—what ecologists typi-
cally use—is consistently biased in these simulations. The point 
estimates from RE model are well- below the estimates from both 
the other designs and the true effect size (Figure 6, Table 1). Not 
only is the estimated coefficient of the RE model always biased 
compared to other estimators in our simulations, but it is also 
more often within 2SE of 0 (i.e., would fail to reject a null hypoth-
esis) in comparison to all other designs. More worrying, in the 
majority (54%) of simulations, the 95% confidence intervals of 
the RE model do not contain the true effect of 1 (Table 1). Other 
than the naïve and random effects model, the other designs show 
similar estimates with balanced data (in Table 1). The first differ-
ences model underperforms with respect to its CI not containing 
the true parameter value relative to other designs, but it performs 
far better than the RE and naïve design. However, the relative 
performance of first difference versus econometric fixed effect 
depends on the structure of data, whether it has more time peri-
ods, or more units (Wooldridge 2010), which likely explains this 
discrepancy.

For estimating standard errors, in general, we urge researchers 
to incorporate random effects or clustered robust standard errors 
as needed to accommodate clustering and heteroskedasticity in 
the error, recognising the tradeoffs of using both and appropri-
ate context (reviewed in Oshchepkov and Shirokanova  2022). 
For instance, a site- level random effect improves efficiency and 
precision for group mean centered or group mean covariate 
models when either the study design is unbalanced or there is 
site- level variation that is uncorrelated with temperature (for 
more details, see Supporting Information S6). If our simulation 
has no site- level variation other than temperature and our con-
founder, a random effect does not improve either models' ability 
to estimate the effect of our causal variable of interest with re-
spect to bias or precision.

8   |   Discussion

We aim to introduce and spur the broader uptake of techniques 
addressing omitted variable bias for causal inference with ob-
servational data. At the core of these and other causal inference 
techniques is an a priori causal model of how a system works 
to guide sampling, statistical design choices, and to clarify as-
sumptions required for a causal interpretation of estimated 
effects. Inferences made from designs that better control for 
unobserved confounding variables can improve our ability to 
understand biological systems, as seen in our simulations and 
results. Further, the techniques presented here are well within 
the standard statistical abilities of most modern ecologists (see 
Supporting Information S7 for R code).

We hope that ecologists can see the concepts presented here 
as part of a generalisable approach to handling confounding 
variables using clustered or hierarchical data. While we use 
sites and years, the same concepts apply to studies with co-
hort effects, individual effects, or other lower levels of clus-
tering as well as larger- scale studies with not just sites and 
years but regions and decades. Cross- sectional and longitu-
dinal sampling designs are also generalisable beyond our ex-
ample's simple case, including for spatiotemporal designs (see 
Box  2). Combining these sampling designs with others, such 

as a stratified random sampling design (Foster et  al.  2018; 
Grafström and Lundström  2013; Kermorvant et  al.  2019; 
Robertson et al. 2013; Stevens and Olsen 2004) will allow for 
the analyses that can both improve causal identification and 
also provide more precision in estimation over multiple envi-
ronmental gradients. How to design a study to fully account 
for confounders, however, will hinge on a causal structure of 
the system and a researcher's ability to be humble in the face 
of what they might not know.

The approaches presented here are not a panacea. They re-
quire some of the same assumptions as experiments (Kimmel 
et al. 2021) for causal inference, that is, the Stable Unit Treatment 
Value Assumption (SUTVA) (reviewed in Kimmel et  al.  2021). 
They require additional assumptions as well regarding confound-
ers (see Table S2). The statistical designs presented here include 
assumptions, at least on the link scale, that effects are linear, 
additive (Imai and Kim 2021), and homogeneous. We have in-
cluded discussion of relaxing these assumptions via interactions 
(Supporting Information S3) and refer readers to a growing lit-
erature on estimating causal effects under heterogeneity and 
non- linearity (Callaway and Sant'Anna  2021; de Chaisemartin 
and D'Haultfœuille  2020; Goodman- Bacon  2021; Sun and 
Abraham  2021) or using flexible machine learning (Athey, 
Tibshirani, and Wager  2019; Athey and Imbens  2019; Fink 
et al. 2023). Generalised linear models can exhibit a slight down-
ward bias for some distributions and link functions, although 
this appears largely negligible (Bell, Fairbrother, and Jones 2018; 
Brumback et al. 2010); techniques for consistent estimation are 
under active development (Schunck and Perales 2017).

The approaches presented here also make the parallel trend 
assumption. It implies that, without a driver, the difference in 
outcomes between different clusters is constant through time 
conditioned on covariates. The parallel trends assumption 
has come under scrutiny (reviewed in Roth et  al.  2023) when 
changes in the causal variable of interest happen at different 
points in time across units (Baker, Larcker, and Wang  2022; 
Marcus and Sant'Anna  2021) or with heterogeneous effects 
(see Borusyak, Jaravel, and Spiess  2024; de Chaisemartin 
and D'Haultfœuille  2020; Goodman- Bacon  2021; Sun and 
Abraham 2021). This assumption also holds true for before- after- 
control- impact analyses (a.k.a. BACI, Difference- in- Differences, 
or Diff- in- Diff designs). Solutions are evolving rapidly, including 
for heterogeneous effects (see Roth et  al.  2023), nonlinearities 
(Imai and Kim 2021), and continuous causal variables (Callaway, 
Goodman- Bacon, and Sant'Anna 2024). They are already being 
implemented in software (reviewed in Roth et al. 2023).

The important thing is to be transparent in how we deal with as-
sumptions required for causal interpretation of estimates. What 
are the assumptions you are making to interpret an effect as 
causal? Why did you control for some covariates and not others? 
Do you have a DAG or conceptual model of your system to help 
a reader understand your thought process? With mixed models, 
do you meet the random effects assumption? Are your clusters 
uncorrelated with your predictor of interest? Why or why not? 
Do you need to implement robust standard errors given your re-
sidual structure? Clarifying these and other decisions, even in a 
brief sentence if not a figure or full breakdown in a manuscript 
supplement (e.g., see Dee et al. 2023), will make analyses more 
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transparent and allow others to build on your work to advance 
science. Further, in concert with the approaches presented here, 
we suggest using sensitivity tests (Altonji, Elder, and Taber 2005; 
Cinelli and Hazlett 2020; Oster 2019; Rosenbaum 2002) or designs 
that differ in assumptions to assess robustness of results [see Dee 
et al. (2023) for an ecological example]. At the end of the day, we 
must be humble and accept that our models and knowledge are 
imperfect. Someday, someone will come along with a different 
approach or new data that produces different conclusions and 
yields new insights. That is just part of the scientific process.

Finally, we emphasise that this paper provides an entry point 
into a broader, interdisciplinary literature on causal inference 
(see Supporting Information  S5 for useful texts). Other quasi- 
experimental designs, such as instrumental variables, synthetic 
control approaches, regression discontinuity designs, and more 
can also be used to eliminate omitted variable bias (see Arif and 
MacNeil 2022b; Butsic et al. 2017; Dee et al. 2023; Fick et al. 2021; 
Grace  2021; Kendall  2015; Larsen, Meng, and Kendall  2019; 
MacDonald and Mordecai 2019). Thoughtful uses of the front- 
door criterion—using mediators between a cause and effect 
unaffected by confounders—could also prove useful for causal 
analysis (Bellemare, Bloem, and Wexler  2024; Pearl, Glymour, 
and Jewell  2016); although, there are no examples in the eco-
logical literature yet to our knowledge. We urge ecologists, long 
grounded in experiments, to consider these and other transdisci-
plinary advances in causal inference in observational data as an 
important complement to experiments.

9   |   Conclusions

“Correlation does not equal causation” rings in many of our 
heads from Biostatistics 101. A key reason behind this message 
is the spectre of omitted variable bias. This fear has impeded 
the use of observational data for causal inference in Ecology for 
much of its recent history. We hope this review can lift some of 
that fear and, armed with the new tools and a knowledge of the 
literature beyond this piece (see above), we can move forward as 
a discipline. With a massively growing volume of observational 
data and problems at continental to global scales demanding 
rapid answers, we look forward to seeing ecologists harness these 
techniques to answering crucial questions in the future.
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